
Algorithmische Graphentheorie

SS 09

Planarity testing

Procedure Search(v)

mark v “old”;
DFN(v) := COUNT ;
COUNT := COUNT + 1;
LOW(v) := DFN(v);
for w ∈ Adj(v) do

if w is marked “new” then
Add {v, w} doe DFS-Tree T ;
FATH(w) := v;
SEARCH(w);
LOW(v) := min{LOW(v), LOW(w)};

else if w 6= FATH(v) then
LOW(v) := min{LOW(v), DFN(w)};

end if
end for

Procedure DFS(G)

T := ∅; { T is a DFS-Tree}
COUNT := 1;
mark each vertex of G as “new”;
select an arbitrary vertex v of G;
SEARCH(v);



Procedure ST-Number(G)

mark s, t, and {s, t} as “old” and all other vertices and
edges as “new”;
push down t and s into a stack S in this order;
{s is over t}
COUNT := 1;
pop up the top entry v from S;
while v 6= t do

if PATH(v) = ∅ then
STN(v) := COUNT ;COUNT := COUNT + 1;

else
let PATH(v) := vu1u2 . . . ukw;
push down the vertices uk, uk−1, . . . , u1, v into S in
this order; { v is a top entry of S }

end if
pop up the top entry v from S;

end while
STN(t):=COUNT;



Procedure PLANAR(G)

G is a given graph;
assign st-numbers to all vertices of G and name the ver-
tices by these numbers;
construct a PQ-tree corresponding to G1

{ a single P-node with virtual edges incident on source
s = 1 }
for v = 2 to n do

{ reduction step}
try to gather all the pertinent leaves by repeatedly ap-
plying the template matchings from the leaves to the
root of the pertinent subtree;
if the reduction fails then

print out “G is not planar”;
return;

end if
{ vertex addition step}
replace all the full nodes of the PQ-tree by a new P-
node (which corresponds to a cut-vertex v in G′

v);
add to the PQ-tree all the neighbors of v larger than
v as the sons of the P -node;

end for
print out “G is planar”;


